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We may thus proceed in the following manner. We first find, by tria]
and error, the value of £ from the implicit relation (8), in which
c=2V T/pg and ¢, is given by (7). Then the definition (5) of k yields
Yo, and finally the equations (6) and (4) give us z and y in terms of the
parameter ¢. In particular, the maximum rise  between the plates is
given by (3).

In connection with the relation (3) between the capillary rises out-
side and between the plates, we noted that » > hy provided y, = 0.
Now if gy were zero, we should have &k = 1 by (5). Then K (k) would
become infinite (see Art. 30, Problem 1), while F(k, ¢1), E(k), and
E(k, ¢1) all remain finite, so that by (8) we should have a infinite, con-
trary to supposition. Hence the liquid will always rise to a higher
level between the plates than it will outside them.

33. The elastica. As another application of elliptic integrals, we
consider the clastica, the curve assumed by a uniform elastic spring,
originally straight, the ends of which are subjected to two equal and
opposite compressive forces (Fig. 28). Let the z-axis be taken through
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the ends of the spring and the y-axis through its midpoint. Let the
magnitude of the force applied at each end, along the z-axis, be F (Ib.),
and let the tangent at any point P(z, %) of the curve make an angle 0
with the negative direction of the z-axis, 2 and y being measured in
inches. Then the bending moment equation [Chapter I, Art. 7(f)]
gives us
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where £ (Ib./in.?) is the modulus of elasticity, I (in.?) is the moment of
inertia of the cross-sectional area of the spring with respect to a line
perpendicular to the ay-plane and through the neutral section, and
R (in.) is the radius of curvature at the point /.
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If s (in.) is the arc length AP, we have

R~ ds  dsdy ay’
hence (1) may be written

Elsingdf = —Fydy,
or, letting ¢ = EI/F,

ydy = —c?sin 9 db. 2)

Integration yields
2

— = c?cos 0 + c;.
5 1

Denoting by « the value of 8 at the end of the spring where y = 0, we
find ¢; = —¢? cos a, and therefore

y = \/ac\/ cos 0 — cos a. 3)

Replacing sin § by —dy/ds in (2), we obtain

do c do
=% =
) \/2\/cos0—cOSa

Substituting cos§ = 1 — 2sin? (6/2), cosa = 1 — 2sin® (a/2), this

becomes

c de

2 [’}
sin® 2 _ gin?-

2

ds =

Letting k& = sin («/2) and sin (§/2) = k sin ¢, whence

6 do k cos ¢ dé
cos —— = k cos
22

and

2k cos ¢ do

d0=———_.__—————
V1 -k sin®¢’

we have

[—2 F(k, ¢
s=c| ————— = cF(k, ¢),
o V1 —k*sin’¢

and (3) reduces to

. 2a . 26
y = 2c A/sin E—sm 5=2ckcos¢.
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To find z in terms of ¢, we have
cdo

dx = cos 0-ds = (1 — 2k? sin? ¢)71—_—kz——§n'2_¢:

_ f"2(1""’28in2"’)—1d — 2Bk, ¢) — F(k, 8)]
T T V- T BTG

Summarizing, we have for the parametric equations of the elastica,

z = c2E(k, ¢) — F(k, ¢)], (4)
y = 2ck cos ¢, 5)

and for the arc length AP,
s = cF(k, ¢), (6)

where
EI a sin (6/2
c=4—, k=sin—, ¢=sin"1‘;/)-
F 2 sin (a/2)
If 2a, b, and L, measured in inches, are, respectively, the distance
between the ends of the spring, the maximum deflection, and the length

of the spring, we have, since ¢ = 7/2 when § = « and ¢ = 0 when
6 =0,

a = 2E(k) — K(&)], 0%
b = 2k, (%)
L = 2cK (k). (6"

Equation (6") is also of particular interest in that it indicates a
critical value for L. For, the function K (sin «/2) must be greater than
m/2 (see Art. 30, Problem 1), and therefore L must be greater than mc
to produce the supposed bent form;if L < wc, we have simple compres-
sion without bending. An equivalent statement is that, for a given
value of L, the number ¢ = 'V EI/F must be sufficiently small if bend-
ing is to result; this may be brought about by decreasing E or I, or
more simply by increasing the force F.

34. The swinging cord. Our next problem is the determination of
the curve assumed by a skipping rope (Fig. 29). Consider a uniform
cord or chain rotating about a horizontal axis to which the ends are
fixed at two points a distance 2a (ft.) apart. Let w (rad./sec.) denote
the constant angular velocity of rotation, which we suppose so large that
centrifugal force predominates over the gravitational force due to the
small weight of the cord; we accordingly consider only the former
force. Let w (Ib./ft.) be the weight per foot of cord, and let ¢ (pdl.)



