
Parameter Scaling in Vertical 
Feedback Seismomenters 

 
 
When analyzing feedback seismometer performance in the Excel workbook ‘Loop’, the 
assumption is made that the Forcing Coil, the Position Sensor, the Spring and the Center 
of Mass are all located at a single point along the boom.  This is not generally true and for 
the spreadsheet, the measured parameter values must be corrected so that they will appear 
to be acting at the assumed point.  In the spreadsheet, these corrected values are 
characterized as ‘effective’ values. 
 
Additionally, the workbook incorrectly computes the boom’s moment of inertia about its 
pivot, by assuming that its mass is concentrated at a single point located at the center of 
mass.  The boom is in fact a distributed structure, having a moment of inertia about its 
pivot which is greater than that of the point mass.  In order to have everything acting at a 
single point, two mass values must be used.  The first is the actual mass, acting at the 
center of mass, corrected to locate it at the common reference point, and used in certain 
of the calculations.  The second is a larger mass which results in the proper rotational 
moment of inertia when located at the common point and which is used in other 
calculations as appropriate.  Currently there is no mechanism for including this second 
mass value in the spread sheet, though that is in the process of being corrected. 
 
Referring to Figures 1 and 2, the variables which we will use are related as follows: 
 
1) M B0B = M d B1 B/d     kg 
 
2) M B1B = M (d B3B/d) P

2
P    kg 

  
3) r Bt B = r d/dB4B    V/m 
 
4) GBn B = G dB2 B/d    N/A 
 
5) KB0 B = K(dB5 B/d) P

2
P     N/m 

 
(Note that the spreadsheet derives KB0B from the measured spring-mass period and it is not 
required to be entered as an input parameter.)   Taking KB0 B from the spreadsheet, we can 
compute the ‘measured’ spring constant of the real spring, located at distance dB5 B as 
 
6) K = KB0 B(d/dB5 B) P

2
P    N/m 

 
Here, MB0 B, M B1 B, rBt B, GBn B and KB0 B are the ‘effective’ values used in the spreadsheet, and M, r, G 
and K are the ‘true’ values, as would be measured at the actual locations of the various 
elements.  Note that the value of ‘d’ is arbitrary and any convenient value may be used.  
It would probably be simplest to make d = d B1B, the distance to the center of mass, or 
perhaps d = d B2 B the distance to the forcing coil axis, just so long as you use the same value 
for ‘d’ in all calculations. 
 
M is the measured mass of the boom assembly, located at the center of mass, which is at 
horizontal distance dB1B from the pivot. 
 



r is the sensitivity of the position sensor (with its amplifiers) as measured at its center, 
located at radial distance dB4 B from the pivot. 
 
K is the incremental force constant of the spring, located at a radial distance dB5B from the 
pivot. 
 
G is the force constant of the feedback coil, located at a radial distance dB2B from the pivot. 
 
Distances dB2B, dB4 B and dB5 B are physical dimensions which may be measured.  The location of 
the center of mass, dB1 B and the radius of inertia, dB3 B will require some experimentation to 
determine.  dB1 B may be determined by hanging the boom assembly from a convenient 
point and estimating where a vertical line through the support would intersect the plane of 
symmetry of the boom, taking dB1 B as the distance from the pivot to the intersection point. 
 
To determine dB3B requires somewhat more work.  One accurate method is to incorporate 
the boom into a torsion pendulum and measure its period.  A suitable length of music 
wire can be used for the torsion spring, suspending the boom on its side from a point 
chosen so that the hinge axis is exactly vertical.  After the oscillation period of the boom, 
TBb B is measured, the boom is replaced by a circular disk of known mass supported 
horizontally from its center, having mass MBd B and radius RBdB, and its period of oscillation 
TBd B is measured.   Knowing that the period of oscillation of a torsion pendulum, in general, 
is given by: 
 
7) T=2π√(I/K)  sec 
 
where I is the moment of inertia of the suspended object and K is the torsion constant of 
the suspension wire, it can be determined that the moment of inertia of the boom about its 
center of mass, when suspended from the same wire as the disk is,   
 
8) I BbcB = (M BdBRBd PB

2
P/2)(TBb B/TBd B) P

2
P   

 
Now, having determined the values of I BbcB and d B1B, we can weigh the boom to determine its 
mass, M, and then make use of the parallel axis theorem to solve for the moment of 
inertia of the boom about its pivot axis, 
 
9) I BbpB = M d B1PB

2
P + IBbcB  

 
This makes the radius of inertia of the boom about its pivot,  
 
10) dB3 B = √(dB1PB

2
P + I BbcB/M)  

 
which is the value we were seeking. 
 
Then from 2) we have that MB1B = M (d B3B/d) P

2
P = M (dB1 PB

2
P + IBbcB/M) / dP

2
P  

 
which allows us to calculate MB1 B as a function of the rotational moment of inertia which 
was measured. 
 
11) M B1B = M d B1 PB

2
P/dP

2
P + IBbcB/dP

2 
P 
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Conversions between linear and rotary motion of the boom. 
 
These all assume that the boom rotation angle θ, is sufficiently small that the 
approximation, sinθ = θ radians, is valid.  Here ‘d’ is the distance from the pivot to the 
point of measurement. 
 
12) dz = d·dθ       Rotation dθ to vertical displacement dz   
 
13) V = dz/dt = r dθ/dt = d·ωBp B       Rotational rate ωBp to vertical velocity V 
 
14) A = d P

2
Pz/dtP

2
P = r dP

2
Pθ/dtP

2
P =d·a     Rotational acceleration a to vertical acceleration A  

 
15) dθ = dz/d      Vertical displacement d to rotation dθ 
 
16) ωBbp B = dθ/dt = 1/r dz/dt = V/d   Vertical velocity d to rotational rate ωBbp B  
 
17) a = dP

2
Pθ/dt P

2
P = 1/r dP

2
Pz/dtP

2
P = A/d  Vertical acceleration A to rotational acceleration a 

 
Note that ωBbp B is the instantaneous rate of rotation of the boom about its pivot (in radians 
per second), as distinct from plain ω, the frequency of an assumed sinusoidal ground 
motion, also expressed in radians per second.  
 

Equations of Motion 
 

Ground motion acting on the boom 
 
Given that ‘F’ is the acceleration force on the center of mass due to ground motion.   
 
18) F = MABg B , where ABgB is the acceleration associated with ground motion. 
 
Torque, ‘Q’, acting on the boom assembly due to ground motion 
 
19) Q = F d B1 B = M d B1 BABg B = M B0B d ABg B B B   
 
Rotational Acceleration, ‘a’, of the boom, due to ground motion 
 
20) a = Q / IBbpB = M B0B dB BABg B / I BbpB = B BABg B d M B0 B / (MB1 B dP

2
P) = ABgB/d  MB0 B/MB1 B 

 
Linear acceleration of the point at distance ‘d’ from the pivot 
 
21) ABd B = d a = ABg B MB0 B/M B1B = ABg B d dB1B/dB3 PB

2
P = ABg B d/(dB1 B+IBbcB/MdB1B) 

 
So the acceleration of point ‘d’ is decreased by the factor MB0 B/M B1B from the ground 
acceleration, where MB0 B/M B1B also = d d B1 B/dB3 PB

2
P = d/(dB1 B+IBbcB/MdB1 B) 

 
Note that in the STS-2 block diagram, in which ‘d’ is chosen = dB2 B, (which they also 
assume = d B4 B), they show this factor as dB1BdB2 B/dB3PB

2
P  which agrees with 21) when ‘d’ is 

replaced by ‘dB2B’. 



Feedback coil force acting on the boom 
 
Assume that the feedback coil exerts a force, ‘F’, on the boom at distance ‘dB2 B’ from the 
pivot.  The torque ‘Q’ applied by the feedback coil to the boom is 
 
22) Q = F d B2 B  where F is the feedback force. 
 
The angular acceleration, a, due to the torque ‘Q’  
 
23) a = Q/IBbpB = F d B2 B/IBbpB  
 
From 14) this results in a vertical acceleration, ‘A’, at radius ‘d’, of 
 
24) A = a d = F/M B1 B dB2B/d  = FddB2 B/ MdB3 PB

2
P  

 
In the STS-2 block diagram it is assumed that d  = d2  so the acceleration ‘A’ of the point 
at distance ‘d2’ due to a feedback coil force of ‘F’ 
 
25) A= F d B2 PB

2
P/Md B3 PB

2
P   which agrees with the STS-2 block diagram. 

  
 






