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Introduction 

The FBV, Force Balance Vertical, series of seismometers make use of the astatic leaf 
spring principle, conceived by Prof. Erhard Wielandt and Gunnar Streckeisen, which was 
described in their paper in 1982.1  This is an elegant and effective solution to supporting 
the seismometer boom in such a way that it may easily be incorporated into the design of 
a force-balance feedback vertical sensor.  However, it is sufficiently elegant that it is not 
so easy to understand what is going on mechanically.  In principle, their design creates an 
astatic configuration which, with careful adjustment of the spring, results in a vertical 
pendulum having a natural oscillation period which can be of the order of several seconds 
or longer. 
 
The leaf spring in the Yuma2, the current FBV design, applies a force and torque to the 
boom sufficient to support it in a level orientation.  But because of its astatic geometry 
the spring exerts only a small restoring torque on the boom, allowing it to oscillate with a 
free period of several seconds, so that the Yuma's electronics can be firmly in control of 
the boom motion, particularly at the long-period end of its response. 
 
The Astatic Principle 

To understand the general astatic principle, consider the horizontal pendulum in Figure 1, 
in which a coil spring has been attached from a point on the pendulum to a fixed point 
above its pivot. Then as the pendulum is displaced to the side, gravity will try to restore 
the pendulum to its rest position.  The further the pendulum is moved, the greater will be 
the restoring force (torque) from gravity.  However as the pendulum is being displaced, 
the spring will begin to exert its own torque, attempting to move the boom away from the 
center, acting in opposition to the effect of gravity.  One could imagine that some 
configuration might be found for the location of points A and B and for the spring 
strength, which, with a given mass, would nearly match the effect of gravity. To such a 
pendulum the gravity acceleration, 'g', would appear to be much less, so it would oscillate 
with a period which is much longer than its length would suggest. Note that if the spring 
were made very slightly stronger, the pendulum would no longer seek the center rest 
position but would have stable positions at both extremes of its swing. 
 
Although, this configuration doesn't actually work in practice, it is somewhat similar to 
the operating principle of the FBV astatic leaf spring, in which the torques from the 
spring and from gravity can be matched almost perfectly by adjusting the spring length 
(by fractions of a mm).  
 

 

 

                                                 
1 Wielandt, E. and G. Streckeisen (1982), The leaf-spring seismometer: Design and performance, Bull. 

Seismol. Soc. Am, 72(6), 2349-2367 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

An astatic pendulum design (that doesn't work) 

 
The FBV Geometry 

 
The FBV astatic spring configuration has a leaf spring rigidly attached at one end to the 
base plate and at the other, to the boom.   This spring configuration has three geometric 

degrees of freedom, which are the end force magnitude, F, force direction, φ, and spring 
end-moment QN; which will be related to the spring-end x coordinate XN , y coordinate 

YN , and its degree of bending, (θN - θ0), as well as to the stiffness of the spring.  In 

addition, the locations of the pivot, the spring-boom attachment and the center of mass, as 
well as the mass magnitude must be specified in order to completely define the astatic 
geometry, and arriving at the "best" or even an acceptable combination by 
experimentation alone is likely to be quite difficult.   Note that, in order to have the 
sensitive axis precisely vertical, with no sensitivity to horizontal motion, Yc must = Yp. 
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     Figure 2 

 

Analysis 

To determine the boom's natural period, it is easiest to analyze it as a rotating spring-
mass, much like the balance wheel of a mechanical alarm clock.  One element of the 
system is a distributed mass rotating about an horizontal axis, consisting of the coil, all 
the boom elements and any trimming weights, which is described by its mass, center of 
mass location and rotational moment of inertia.  Attached is the equivalent of a torsion 
spring.  This is a "virtual" spring, arising from the sum of the moments acting on the 
boom, whose magnitude is made to be approximately proportional to angular deflection, 
and which acts in a direction tending to restore the boom to its horizontal rest position. 
 
The virtual spring is the resultant of two major competing moments which both vary 
slightly with boom rotation, one from the gravity force W acting on the center of mass, 
and tending to rotate the boom downward (CW), the other from the leaf spring, acting 
upward (CCW).  In addition, the pivot flexures add a small amount to the total moment.  
This virtual spring may be approximated by a rotational spring constant, defined as the, 
assumed constant, rate at which the net restoring moment changes (per radian) of boom 
rotation.  Once we have determined the moment of inertia and effective spring constant, 
the free period of oscillation is easily computed. 
 
In order to observe the nature of the restoring moment, we can compute the sum of the 

spring and gravity moments, and plot it vs. the up-down boom rotation angle γ.  For a 
workable design, we want two conditions to be fulfilled.  First, for equilibrium, the net 

restoring moment should be zero when the boom is in its horizontal rest position at γ = 0.   
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     Figure 3 



 
Second, in order to have a stable equilibrium, the upward moment should increase as the 
boom rotates downward, and then reverse and become a net downward moment as the 
boom is rotated above zero degrees.  This is of significance because it is easy to find 
configurations where the latter conditions are reversed, in which case, in the absence of 
force feedback the boom will be bistable, moving to either its upper or lower limit stop 
when released.  As plotted in the "Net Moment" chart, a stable net moment curve will 
intersect the Q = 0 axis with a negative slope, i.e. from upper left to lower right.  It would 
also be desirable for the net moment vs. rotation curve to be symmetrical and relatively 

linear near γ = 0, the region where a force-feedback instrument would normally be 
operating.  This is equivalent to requiring that the free period remain nearly constant for  

γ angles near 0. 
 
The Problem 

Most equations dealing with the bending of objects assume that, when the load forces are 
applied, the shape of the object (a beam) does not change appreciably from its un-loaded 
shape.  For the beams supporting the floors of a building, for example, this is a 
reasonable assumption.  A leaf spring, bent through something like 180 degrees does not 
meet the assumption of constant shape, and designers would typically use a Finite 
Element Analysis method to analyze such a spring.  The problem would be solved by 
using successive approximation. 
 
Lacking an FEA program I tried to see if the analysis could be done using the Microsoft 
spreadsheet program, Excel.  The desired analysis can, indeed, be done by using a series 
of Excel worksheets, 'FBVsolve_Y1.14d.xls', into which all the relevant parameters are 
entered,.  Then, the effects of changing the various dimensions can be studied as they 
relate to the resulting period of oscillation, linearity and stability.   
 
The problem of determining the physical characteristics of a system of the FBV design 
may be broken into several parts. 
 
1. Determine the effective boom mass value, the location of its center of mass and its 
radius of gyration or rotational moment of inertia.  These are determined by weighing and 
measuring the physical boom.  For the Yuma2, these values are generally known. 
 

2. As a function of the boom rotation angle, γ, (0 = horizontal rest position) compute the 
coordinates of the center of mass and the spring attachment point and the angle of the 
spring attachment.  Worksheet "Rotation" handles this.  Line 6 contains the results of the 
computation for a particular boom angle, as defined in cell A76 of worksheet “Control”  
(Control!A76). 
 
3. As a function of the leaf spring dimensions and material properties, i.e., its stiffness, 
compute the spring end force (magnitude and direction) and the spring end moment, 
given the spring-boom attachment point coordinates and angle. 
 



This step is the most involved to describe.  For computational purposes, the leaf spring is 
broken into 600 small but finite elements of identical length.   
 
Beginning at the point where the spring 
is attached to the mounting base, the 
bending moment is calculated for the 
first element which allows the bend 
radius, ‘r’, to be determined in the 
vicinity of that point.  Then knowing 
the location and angle of the element's 
starting face, the location and angle of 
its opposite face may be accurately 
computed.  In turn, the ending 
coordinates and angles of each element    
are used as the starting conditions for 
the next.  In this way, the shape of the 
entire spring may be built up, element 
by element.  Worksheet "spring" does 
this computation, using 600 lines, one 
for each of the elements, and the resultant                                             Figure 4 
spring shape is graphed on the chart "shape".   
 
For convenience in calculation (avoiding circular references) it is assumed that the force 
is applied to the spring at the (fixed) location of the boom attachment point, which will 
not necessarily start out coincident with the end of the spring.  This can be viewed as if 
the force were applied at the end of a rigid link from the attachment point on the boom 
and extending to the end of the spring. 
 
However, it should be noted that the problem we have just solved is the inverse of what 
we need.  What we wanted were the values of the force and moment given the desired 
spring-end position.  These are obtained in the following step by using the Excel "Solver" 
to back-solve the problem, performing a systematic trial and error search to find the exact 
force and moment which will result in the required spring end location and angle.  The 
effect of this will be to make the end of the spring coincide with its attachment point on 
the boom, and the imaginary link described above, disappears. 
 

To do this for one boom angle and parameter set, click    "Run Solver".   The results 

will appear in the "Control" worksheet, as changes to the spring end force and moment in  
cells C66-68, and also to any variables deriving from them.  These changes will also be 
reflected in charts “Shape”, “Moment” and “Slope”.  
 
4. For each of 21 boom rotation angles from +5 degrees to -5 degrees, compute the net 
restoring moment on the boom.  This process has been automated with the macro 

  "Spring_Solve", which when invoked by clicking  it, first adjusts the center of  

mass horizontal location for exact balance at γ = 0, and then goes on using the Excel 
Solver to compute the significant moment values for all 21 values of gamma.  The results 
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are placed in the Results Table, to become the source data for the three charts "Net 
Moment",  "Pivot Moments" and "Spring Moments"  A copy of the important parameters 
is created adjacent to the Results Table, for convenience in archiving the data set. 
 
5. Plot the net restoring moment vs. boom angle.  Then compute the slope of the net 
restoring moment curve at the point of boom equilibrium. 
 
Worksheet "CurFitter", generates a smoothed version of the plot of the net moment 

around the pivot vs. boom tilt angle, γ , which is also displayed on charts "Pivot 
Moments" and "Net Moment" along with the previously computed results.    
 
6. Finally, compute the free period based on the boom's rotational moment of inertia and 
the slope of the net restoring moment curve. 
 
This is calculated in worksheet "Control" and uses the slope of the net moment data 
obtained in step 5 and the boom's moment of inertia from step 1 to obtain the free period 
of the spring-mass for the selected set of parameters.  The period is displayed in cell C42.   
 
Notes on the Excel analysis system 

 
The worksheet "Control" is where parameters are entered and where the resulting values 
are viewed.  Cells which contain input parameters are yellow.  Cells which contain key 
results (formulas) are blue.   
 

When “Spring Solve” finishes calculations for all 21 values of γ, the results may be saved 

by clicking           "Save Plot Data".   This appends the resulting data and parameter set to  

worksheet "Data Sets".  Then the process may be repeated using different parameters.  In 
order to help identify the data set, the date and time of the data run in cell A79 and any 
reference information entered by the user in Cell B79 will be included at the beginning of 
the saved data. 
 
To retrieve a previously saved data set along with its parameters, go to the "Data Sets" 
worksheet.  Highlight (click on) the blue date/time cell at the beginning of the desired 

data set, then click          "Load Plot Data".  This will copy the selected data set and its 

associated  parameters back to the "Control" worksheet. 

 
Results 

Of interest is how changes of only a tenth of a millimeter in the spring length can 
significantly affect the free period.  The data below were obtained using the Yuma2 
parameters and varying the spring length.  We see that the free period is a function of the 
leaf spring length, and gets longer as the spring gets shorter until we pass the point of 
neutral stability (infinite period) at 3.4433 inches of length, and the period numbers jump 
negative.  A negative period indicates that the associated configuration is unstable and its 
value suggests how quickly the boom will tend to move toward the end stop. 
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3.462 2.450 -0.0005528 3.042

3.460 2.593 -0.0004951 3.044

3.458 2.763 -0.0004371 3.046

3.455 3.096 -0.0003494 3.050

3.453 3.400 -0.0002906 3.052

3.451 3.814 -0.0002314 3.054

3.449 4.431 -0.0001719 3.056

3.447 5.495 -0.0001121 3.059

3.445 8.082 -0.0000519 3.061

3.444 12.502 -0.0000217 3.062

3.4433 79.288 -0.0000005 3.063

3.443 -19.940 0.0000086 3.063

3.4425 -11.976 0.0000237 3.064

3.442 -9.354 0.0000389 3.064

3.441 -7.011 0.0000694 3.066

3.440 -5.845 0.0000999 3.067

3.438 -4.607 0.0001612 3.069

3.436 -3.923 0.0002229 3.071

3.434 -3.475 0.0002849 3.074

3.432 -3.151 0.0003473 3.076

3.430 -2.904 0.0004100 3.078

3.427 -2.622 0.0005047 3.081

3.424 -2.409 0.0006002 3.085

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 
 
For each spring length selected, the center of mass location must be adjusted very slightly 
to obtain an exact balance when the beam is horizontal.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 



 
It should be noted that there is nothing particularly special about adjusting the spring 
length to vary the free period, just as there is nothing special about the spring lengths 
obtained.  I believe that a similar looking set of data could be created by keeping the 
spring length constant and systematically adjusting some other dimension of the system. 
 
In looking at the sensitivity of the system to changes in its various dimensions, it appears 
that many or most of the other dimensions may be just as critical as the spring length.  A 
0.1 mm variation from optimum makes a significant difference in the results.  One is 
unlikely to get this astatic design working well by trial and error methods, and 
preliminary modeling will almost certainly have to be an essential part of the design 
process. 
 



The Excel Cookbook: 
 

Notes: 
 
This workbook will only work with Excel 97 and later versions.  It is also 
computationally intensive.  The routine “Spring Solve” requires nearly one minute to 
complete, with a 2 GHz PentiumIV, which implies that “Run Solver” is requiring an 
average of 2.5 seconds per solution.  Excel 2002, when running this workbook, was 
requiring 20Mb of free memory for the worksheet and the operation of its macros.   With 
a 600 MHz Pentium III, computation was about 3 times slower.  However, with a more 
modern computer, "Spring Solve" completes within about 10 seconds. 
 
Getting Started: 

 
Macro security: 

Since this workbook uses VBA macros you will want to give Excel permission to run 
them.  Some macros contain viruses, though I have tried to make sure that the ones here 
don’t.  When opening this workbook, you should agree to enable macros unless you are 
just browsing. 
 

 
                          Newer Version      Older Version     
 
To permit enabling macros, in Excel (newer versions), with a blank worksheet, go to 
“Tools / Options / Security / Macro Security / Security Level”  and select either Low or 
Medium (recommended), then OK (twice).   Note that if you selected Low, Excel will 
never offer you the option to disable macros for any Workbooks you may open. 
    
Some earlier versions of Excel, allow macros all the time.  Slightly more recent versions 
permit you to activate a warning popup (recommended) which allows you to select 
whether to allow macros to run or not.   In those version you can go to “Tools/ Options / 
General” and checkmark “Macro virus protection”.  This has exactly the same effect as 
setting the Security Level to “Medium” as described above.     
 
Solver: 

This Workbook requires the Excel Add-in called “Solver”  To determine that it will be 
available, Open Excel with a blank worksheet, then select Tools / Add-ins and look for 
“Solver Add-in” in the list and be sure that it is check marked.   



 
However, if there is no “Solver Add-in” listed, you can expect that the first time this 
Workbook is opened, you will be asked to install it.  That will require you to have 
available the original installation files for Excel, either from a CD, your hard drive or 
from a network.  It is possible that the "Analysis Took Pak" also needs to be present and 
check marked.   
 
Custom toolbar: 

After opening this Worksheet, look to see that the "STS-1" custom toolbar is visible.   
 
 
 
 
If not, select “View / Toolbars ” and make sure the "STS-1" entry is checked. 
 
Worksheet locking.   

 
All worksheets are protected, which prevents the accidental altering of important 
formulas.  Cells which contain constants which can be altered are colored light yellow.  
Data may be entered in those cells, and all macros may be run without unlocking the 
worksheets.  To unlock a worksheet, select Tools/Protection/Unprotect Sheet. 
 

The Charts: 
 
Shape  (Updated real-time. Valid solution after running “Solver”) 
This shows the shape of the spring.  The X and Y coordinate scales should be kept the 
same to avoid distortion.  It is a great place to see how the spring end forces are adjusted 
to get the desired end coordinates.  Whenever you change a parameter, the spring end 
will move away from the target point (assuming the “Auto Solve” cell was set to 
“FALSE”).  After running Solver, the end forces will have been adjusted so that the 
spring is connected again. 
 
Net Moment   (Plotted from data in the table generated by “Spring Solve”) 
Shows the restoring moment vs. boom rotation, plotted from the difference between the 
gravity moment and spring moment curves, or rather, from cubic polynomial curves fitted 
to them.  The present setup computes the moment data accurately enough for each curve 
to be essentially identical to its fitted approximation.  A line tangent to the Net Moment 
curve at zero degrees rotation approximates the torsion spring constant, which is 
determining the free period.  Also a plot of slope vs. boom rotation gives a quantitative 
look at the degree of nonlinearity of this virtual spring. 
 

Pivot Moments    (Plotted from data in the table generated by “Spring Solve”) 
Shows the gravity and spring moments separately vs. boom rotation.  These are opposing 
moments, but the gravity moment is plotted as its negative.  Where the curves intersect is 
the point where the net moment is zero.  At present, “Spring Solve” adjusts the center of 
mass location slightly, which raises or lowers the gravity moment curve so that, for the 



 

assumed set of parameters, the intersection occurs at zero degrees boom rotation.  These 
curves are very helpful in visualizing how geometry changes are affecting the free period. 
 
 

Spring Moments  (Plotted from data in the table generated by “Spring Solve”) 
The spring has two effects on the boom.  First it creates a force which tends to rotate the 
boom downward.  Then its end moment, which in the default example is about four times 
larger, tends to rotate the boom upward.  The force-induced moment, the spring end 
moment and their sum are plotted vs. boom rotation.  It is interesting that both 
components of the spring moment, when varying the boom angle, change in opposite 
directions, so that the total spring moment change with boom rotation is rather small.  
Also included in the Spring Moment value is the small contribution from the flexures. 
 
Period  (Plotted from data in manually-entered table) 
shows free period vs. spring length for a set of assumed parameters.  It is plotted from the 
"Control” worksheet, "Summary, current values" data.  This data for this chart were 
entered by hand by running “Spring Solve” for successive values of spring length and 
copying the results into the table. 
 
Moment  (Updated real-time. Valid solution after running “Solver”) 
shows the spring bending moment vs. distance along the spring from s = 0 to L, the end 
of the spring.  Data comes from Worksheet "Spring". 
   
Slope  (Updated real-time. Valid solution after running “Solver”) 

shows the angle θ the spring makes with the world horizontal vs. distance along the 

spring.  Where the spring attaches to the base, θ = 90 degrees, at s = 0, .  If the boom is 

horizontal, θ = -90 degrees, at s = L, where the spring attaches to the boom.  Data comes 
from Worksheet "Spring". 
 

 

 

The STS-1 Command Bar: 
 
Auxiliary buttons: 

 
  Paste Values 

Pastes only copied cell value, not its formula or format. 
 Almost always you will want to use this instead of <ctrl>V or Edit, Paste. 

  
 

Paste Format 
Pastes only cell format, not its value or formula. 

You will likely need this only when modifying the worksheets. 
 



 

 Protect All 

Sets all worksheets and charts in this workbook to “Protected”.   If worksheets 
have been unprotected for editing this would normally be used before saving the 
workbook. 

 
Spring solving buttons: 

 
Run Solver 

Attaches the spring end to the boom by recomputing the spring end force and 
moment to match the current boom position and other parameters.   
You will likely need to run this after changing any parameter.   

 
Spring Solve 

Computes and records a complete set of 21 results for boom positions from -5 deg 
to +5 deg. using the current parameter set in Control!C2:C20, etc.  The result 
table is saved in Control!A80:K100 and is used to create the three "Moment" 
graphs.  A copy of the parameters used is placed to the right of the data set. 

  
  Save Plot Data 

Appends the current “Plot Data” results table and parameters to the text        
worksheet  "Data Sets" 

 
Load Plot Data 

After selecting the desired Date/Time cell (blue), retrieves the results table data 
from "Data Sets" into the “Plot  Data” table for display in the "Moments" graphs. 
Sets all parameters to the values which were used to create to the data.   

 
  Set Chart Titles 

Updates the Chart Title variables to correspond to the data sets being displayed. 
Use this before printing or using the charts.  However it will be done 
automatically by “Run Solver”, “Spring Solve” and “Load Plot Data” 

 
Auto Solve 

Almost any time an input parameter (yellow cell) is changed, the spring end becomes 
detached from its attachment point on the boom, which can best be observed in the Chart  

“Shape”.  In order to reconnect the spring one must execute the           “Run Solver” 

macro (above), which iteratively seeks the solution.  This procedure can be automated by  
entering “TRUE” in cell H73 of Worksheet “Control”.  Then, any change to a cell which 
causes the spring end to separate from its attachment will automatically invoke “Run 
Solver”.  By default, H73 is set “FALSE” (recommended). 
 

Solver Convergence 
Although the Excel “Solver” program usually does an excellent job of converging on the 
correct solution, it is possible for it to become confused if its starting conditions are badly 
chosen or following large changes made to the parameters.  If necessary, the starting 



values may be entered manually into cells C66-68 of the “Control” worksheet.  These 
cells normally contain the values calculated in the previous “Solver” run.   
 
To observe the sort of problem which may occur, make sure cell H73 of “Control”  is 
“FALSE”; then try entering 0, 0, -1  for F, φ and Q(L).  You can see on the “Shape” chart 
that the spring is now curving off the chart to the left.  Then click the “Run Solver” 
button.  After 100 iterations, Solver will pause, and you should click “Stop” in the pop up 
window which appears. 
 
   
 
 
 
 
 
 
Now look at “Shape” again.   
 
This sort of problem can be avoided by ensuring that the starting conditions have the 
spring bending in the correct direction and ending in the general vicinity of the boom 
attachment point.  Normally that will be the case if changes made to the parameters are 
not too large.  However if there is a problem, in C66:C68 you can try entering 0 for F and 
φ and then find a value for QN which has the spring bending to place its end in the 
general neighborhood of Xa,Ya.   Note that entering 0, 0, 0, creates undefined values 
which are associated with having specified an infinite bending radius. 
 

Known bugs: 
 
1) If you start to close the worksheet, but click “cancel” on the “Do you want to save 
changes” pop-up, the special “STS-1” toolbar disappears.   
 
Workaround to recover it:  Select Tools / Customize / Toolbars  Then scroll down and 
restore the checkmark for “STS-1”. 

 

Some Random Thoughts: 
 
Thin beams:  A wide, thin, spring behaves slightly differently when bent compared with a 
piece of steel that has, for example, a square cross section.  The usual beam-bending 
equations would be accurate for the square beam, but not for the leaf spring.  The latter 
will appear to be stiffer than predicted by a factor of about 9%, or to be more precise by a 

factor of 1/(1-ν2) where ν is Poisson’s ratio, which for steel is about 0.29.  The easiest 
way to incorporate this correction into the bending equations is to assume an increased 
value for  the modulus of elasticity of the spring material by multiplying by that factor.  If 
the stated modulus of elasticity for the spring material is E, then the corrected value, 

called E1 in the spreadsheet, equals E/(1-ν2) or for steel, E/ 0.916 . 
 



Temperature coefficient:   
For instruments like the Yuma, which have frequency responses with two zeros at zero 
and a double pole at their low-frequency corner, will, when experiencing slow 
temperature changes, exhibit an apparent velocity offset which is proportional to the rate 
of temperature change seen by the spring.  This will be in the amount of  6.9E-5 KET TL

2  
µm/s per ºC/hour, where KET is the temperature coefficient of the spring's modulus of 
elasticity in parts per million per ºC and TL is the period of the instrument's low 
frequency response corner in seconds.  For the Yuma  KET ≈ -240 ppm/ºC and TL = 50 
seconds, which predicts an output offset of -41.4 µm/s per ºC/hour.  
However, its response to a temperature change will be essentially zero, once the spring 
temperature has stabilized. 
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Appendix I 

 
The Solver Model 

 
The macros “Run_Solver” and “Spring_Solve” both use the “Solver” add-in program.  
The control parameters passed to “Solver” are located on the “Control” worksheet in the 
named range “Solver_Model” located in cells H66-71.  The data in those cells is as 
follows: 

 
Cell              Contents    Meaning 

H67  =MIN($F$72)   Minimize F72 (θ(L) error squared) 
H68  =COUNT($C$66:$C$68) By varying cells C66-68 
H69  =$C$70=Control!$D$70 Constraint: X(L) = its target value 
H70  =$C$71=Control!$D$71 Constraint: Y(L) = its target value 
H71  ={60,500,0.0000000001,0.00000000001,FALSE,FALSE,TRUE,2,2,1, 
  1E-20,FALSE} 
 
 Cell H71 contains multiple parameters:  
  60   Max time – sec. 
  500   Max number of Iterations 
  0.0000000001  Precision 
  0.0000000001  Tolerance 
  FALSE  Assume linear (not) 
  FALSE  Assume non-negative (not) 
  TRUE   Use automatic scaling 
  2   Estimates: Quadratic (selection 2) 
  2   Derivatives: Central (selection 2) 
  1   Search: Newton (selection 1) 
  1E-20   Convergence 
  FALSE  Show iteration results (not) 
 
These values have been found to generally work pretty well.  On a very slow computer, it 
may be necessary to reduce “Max Time” and “Iterations” to permit the process to abort if 
it is taking too long. 
 



Appendix II  
 
To Understand the Math: 

 
It is not necessary to understand the math, physics or mechanics which were used to 
create the spreadsheet in order to use it, but the more background the reader has in certain 
areas, the better the problem can be understood. 
 
To begin with, the over all design is analyzed as a torsion pendulum, so it is useful to 
have seen something of the physics of such a device.  In particular, the analysis considers 
this pendulum to be a distributed mass, rather than a point mass, which involves such 
concepts as the Radius of Gyration.  A beginning physics book would cover these. 
 
Secondly, a basic understanding of forces, force vectors and moments is fundamental to 
the analysis.  It is useful to understand how to interpret a free-body diagram, such as in 
fig. 3.  This involves understanding the relationship between moments and forces and 
understanding that, when at rest, the forces and moments on such a body must both sum 
to zero.  These would be covered in a beginning book on Mechanics or Strength of 
Materials.   
 
Also, such books would cover the simple beam-bending equations used to compute the 
bending radius of each element of the spring, as shown in figure 6, which uses concepts 
such as material Elastic Modulus, and properties of the spring cross-section shape, such 
as the section ‘Area Moment of Inertia’ (which incidentally has little to do with physical 
inertia).   
 
And algebra and trigonometry are used throughout. 



Appendix 1, Macros 
 
Public SolverFlag As Boolean 
 
Private Sub Auto_Open() 
 
    Toolbars("STS-1").Visible = True 
    Toolbars("STS-1").ToolbarButtons(3).OnAction = "RunSolver" 
    Toolbars("STS-1").ToolbarButtons(4).OnAction = "SpringSolve" 
    Toolbars("STS-1").ToolbarButtons(5).OnAction = "SavePlotData" 
    Toolbars("STS-1").ToolbarButtons(6).OnAction = "LoadPlotData" 
    Toolbars("STS-1").ToolbarButtons(7).OnAction = "SetChartTitles" 
    Toolbars("STS-1").ToolbarButtons(8).OnAction = "ProtectAll" 
    ProtectAll 
    CheckSolver 
         
End Sub 
'-------------------------------------------------------- 
 
Private Sub Auto_Close() 
 
    Toolbars("STS-1").Visible = False 
 
End Sub 
'-------------------------------------------------------- 
 
Private Sub CheckSolver() 
 
  If Application.AddIns("Solver Add-in").Installed = False Then _ 
     AddIns.Add("solver.xla").Installed = True 
 
End Sub 
'-------------------------------------------------------- 
 
Private Sub ProtectAll() 
    Dim Sheet As Worksheet 
    Dim ChartPage As Chart 
     
Application.ScreenUpdating = False 
 
'Protect all Worksheets But allow modification by programs 
    For Each Sheet In Worksheets 
       Sheet.Protect UserInterfaceOnly:=True 
    Next Sheet 
   
'Protect all Charts 



    For Each ChartPage In Charts 
        ChartPage.Protect 
    Next ChartPage 
Application.ScreenUpdating = True 
End Sub 
 '-------------------------------------------------------- 
 
Private Sub SpringSolve() 
' 
' Keyboard Shortcut: Ctrl+l 
' 
On Error GoTo ErrorHere 
SolverFlag = True 
 
Worksheets("Control").Activate 
 
Range("Result_Table").ClearContents 
Range("Calculated").ClearContents 
Range("Param_Table").ClearContents 
Range("Result_Table2").ClearContents 
 
' Put a copy of the Paramater Values in the table 
Range("Params").Copy 
Range("Param_Table").Range("A1").PasteSpecial (xlPasteValues) 
 
'Boom at Zero 
' 
'   Compute spring for Gamma = 0 
Range("Results").Cells(1, 1) = 0 
' 
SolverLoad loadArea:=Range("Solver_Model") 
SolverSolve UserFinish:=True 
 
'   Adjust Center of Mass 'Xc' for zero Net Moment 
 
For I = 1 To 10 
CGX = Range("Xc") * (0.995 + 0.01 * Rnd) 
Range("Xc") = CGC 
Range("dQp").GoalSeek Goal:=0, ChangingCell:=Range("Xc") 
If Range("dQp") = 0 Then Exit For 
Next 
 
'Calculate Moments, etc. for all 21 values of Gamma 
 
For Gamma = 0 To 5 Step 0.5 
    Range("Results").Cells(1, 1) = Gamma 



    SolverSolve UserFinish:=True 
    Res_Row = 11 - (2 * Gamma) 
    Range("Results").Copy 
    Range("Result_Table").Range(Cells(Res_Row, 1), Cells(Res_Row, 11)). _ 
        PasteSpecial (xlPasteValues) 
    Range("Results").Cells(1, 1).Select 
Next Gamma 
 
Range("Result_Table").Range("B11").Copy 
Range("EndForces").Range("A1").PasteSpecial (xlPasteValues) 
Range("Result_Table").Range("C11").Copy 
Range("EndForces").Range("A2").PasteSpecial (xlPasteValues) 
Range("Result_Table").Range("F11").Copy 
Range("EndForces").Range("A3").PasteSpecial (xlPasteValues) 
 
For Gamma = -0.5 To -5 Step -0.5 
    Range("Results").Cells(1, 1) = Gamma 
    SolverSolve UserFinish:=True 
    Res_Row = 11 - (2 * Gamma) 
    Range("Results").Copy 
    Range("Result_Table").Range(Cells(Res_Row, 1), Cells(Res_Row, 11)). _ 
        PasteSpecial (xlPasteValues) 
    Range("Results").Cells(1, 1).Select 
Next Gamma 
 
    Range("Results").Cells(1, 1) = "0" 
Range("Result_Table").Range("B11").Copy 
Range("EndForces").Range("A1").PasteSpecial (xlPasteValues) 
Range("Result_Table").Range("C11").Copy 
Range("EndForces").Range("A2").PasteSpecial (xlPasteValues) 
Range("Result_Table").Range("F11").Copy 
Range("EndForces").Range("A3").PasteSpecial (xlPasteValues) 
 
'Range("Qcoeff").Range("A1:A4").Copy 
'Range("Result_Table2").Range("A1:A4").PasteSpecial (xlPasteValues) 
'Range("Qcoeff").Range("B1:B4").Copy 
'Range("Result_Table2").Range("A5:A8").PasteSpecial (xlPasteValues) 
Range("T0").Copy 
Range("Result_Table").Range("L19").PasteSpecial (xlPasteValues) 
Range("Ks").Copy 
Range("Result_Table").Range("L20").PasteSpecial (xlPasteValues) 
Range("gFp").Copy 
Range("Result_Table").Range("L21").PasteSpecial (xlPasteValues) 
 
'Put the value of the adjusted mass CG in table 
 



Range("Params").Range("A5").Copy 
Range("Param_Table").Range("A5").PasteSpecial (xlPasteValues) 
 
'Range("Param_Table").Cells(21, 1).PasteSpecial (xlPasteValues) 
 
'Set Chart Titles to reflect current parameters. 
SetChartTitles 
Range("Calculated") = Now 
SolverFlag = False 
 
'MsgBox "Spring solution complete." 
 
Exit Sub 
 
ErrorHere: 
MsgBox Error(Err.Number) 
''Resume 
End Sub 
'-------------------------------------------------------- 
 
Sub RunSolver() 
' 
' RunSolver Macro 
' 
On Error GoTo ErrorHere 
 
' For faster operation, don't update screen while running. 
Application.ScreenUpdating = False 
 
' Flag so that AutoSolve doesn't execute this recursively as cells are updated. 
SolverFlag = True 
 
Worksheets("Control").Activate 
 
SolverLoad loadArea:=Range("Solver_Model") 
Range("Restart").Copy 
Range("EndForces").PasteSpecial (xlPasteValues) 
SolverSolve UserFinish:=True 
 
'Set Chart Titles to reflect current parameters. 
SetChartTitles 
 
Application.ScreenUpdating = True 
SolverFlag = False 
Exit Sub 
 



ErrorHere: 
MsgBox Error(Err.Number) 
Resume 
End Sub 
'-------------------------------------------------------- 
 
Private Sub LoadPlotData() 
' 
' For faster operation, don't update screen while running. 
Application.ScreenUpdating = False 
SolverFlag = True 
 
' Check that "Data Sets" is the active sheet 
If ActiveSheet.Name <> ("Data Sets") Then Exit Sub 
 
' Check that active cell is colored 
If Selection.Interior.ColorIndex <> 28 Then Exit Sub 
 
'Selection.Copy 
'Range("Calculated").PasteSpecial Paste:=xlValues 
 
'Select copy range as relative 
    ActiveCell.Offset(0, 0).Range("A1:B1").Select 
    Selection.Copy 
 
    Sheets("Control").Range("Calculated").Range("A1") _ 
        .PasteSpecial Paste:=xlValues 
     
    ActiveCell.Offset(1, 0).Range("A1:L21").Select 
    Selection.Copy 
 
    Sheets("Control").Range("Result_Table").Range("A1") _ 
        .PasteSpecial Paste:=xlValues 
        
'        ActiveCell.Offset(0, 0).Range("M1:M10").Select 
'    Selection.Copy 
' 
'    Sheets("Control").Range("Result_Table2").Range("A1") _ 
        .PasteSpecial Paste:=xlValues 
  
'Copy saved Param Values to "Params" 
    Sheets("Control").Range("Param_Table").Range("A1:A18").Copy 
    Range("Params").PasteSpecial Paste:=xlValues 
         
'Set spring end conditions 
    Range("Result_Table").Range("B11").Copy 



    Range("EndForces").Range("A1").PasteSpecial Paste:=xlValues 
 
    Range("Result_Table").Range("C11").Copy 
    Range("EndForces").Range("A2").PasteSpecial Paste:=xlValues 
 
    Range("Result_Table").Range("F11").Copy 
    Range("EndForces").Range("A3").PasteSpecial Paste:=xlValues 
 
'Set current gamma to zero 
    Range("Results").Range("A1").FormulaR1C1 = "0" 
     
'Set Chart Title variables 
    SetChartTitles 
     
Application.ScreenUpdating = True 
SolverFlag = False 
 
End Sub 
'-------------------------------------------------------- 
 
Private Sub SavePlotData() 
 
Application.ScreenUpdating = False 
Worksheets("Control").Activate 
 
CalcDate = Range("Calculated") 
Comment = Range("Comment") 
Range("Result_Table", "Param_Table").Copy 
Worksheets("Data Sets").Activate 
 
LastRow = Cells.Find(What:="*", _ 
    SearchDirection:=xlPrevious, _ 
    SearchOrder:=xlByRows).Row 
Worksheets("Data Sets").Cells(LastRow + 2, 1).PasteSpecial xlPasteValues 
'Range("Result_Table2").Copy 
'Worksheets("Data Sets").Cells(LastRow + 2, 13).PasteSpecial xlPasteValues 
Cells(LastRow + 1, 1) = CalcDate 
Cells(LastRow + 1, 1).Interior.ColorIndex = 28 
Cells(LastRow + 1, 2) = Comment 
Worksheets("Control").Activate 
Application.ScreenUpdating = True 
 
End Sub 
'-------------------------------------------------------- 
 
Private Sub SetChartTitles() 



 
Application.ScreenUpdating = False 
Worksheets("Control").Activate 
 
 
SpringLenData = Range("Param_Table").Cells(3) 
SpringLen = Range("Params").Cells(3) 
Gamma = Range("A76") 
 
With Charts("Net Moment") 
    .Unprotect 
    .ChartTitle.Text = "Net Pivot Moment vs Boom Angle" _ 
        & vbCr & "L = " & Format(SpringLenData, "0.0000") & " in" 
    .Protect DrawingObjects:=True, Contents:=True, Scenarios:=True 
End With 
 
With Charts("Pivot Moments") 
    .Unprotect 
    .ChartTitle.Text = "Pivot Moments vs Boom Angle" _ 
        & vbCr & "L = " & Format(SpringLenData, "0.0000") & " in" 
    .Protect DrawingObjects:=True, Contents:=True, Scenarios:=True 
End With 
 
With Charts("Spring Moments") 
    .Unprotect 
    .ChartTitle.Text = "Spring Moments vs Boom Angle" _ 
        & vbCr & "L = " & Format(SpringLenData, "0.0000") & " in" 
    .Protect DrawingObjects:=True, Contents:=True, Scenarios:=True 
End With 
 
Charts("Shape").Unprotect 
With Charts("Shape").ChartTitle 
    .Text = "Spring Shape" & vbCr & "L = " _ 
        & Format(SpringLenData, "0.0000") & " in" _ 
        & "     g = " & Format(Gamma, "0.0") & " Deg." 
    .Characters(Start:=32, Length:=1).Font.Name = "Symbol" 
    .Characters(Start:=14, Length:=99).Font.Size = 14 
End With 
Charts("Shape").Protect DrawingObjects:=True, Contents:=True, Scenarios:=True 
     
Charts("Moment").Unprotect 
With Charts("Moment").ChartTitle 
    .Text = "Spring Interior Moments Q(s)" _ 
        & vbCr & "L = " & Format(SpringLenData, "0.0000") & " in     " _ 
        & "g = " & Format(Gamma, "0.0") & " Deg." 
    .Characters(Start:=48, Length:=1).Font.Name = "Symbol" 



    .Characters(Start:=30, Length:=32).Font.Size = 14 
End With 
Charts("Moment").Protect DrawingObjects:=True, Contents:=True, Scenarios:=True 
 
Charts("Slope").Unprotect 
With Charts("Slope").ChartTitle 
    .Text = "Spring Tangent Angle q(s)" _ 
        & vbCr & "L = " & Format(SpringLen, "0.0000") & " in     " _ 
        & "g = " & Format(Gamma, "0.0") & " Deg." 
    .Characters(Start:=22, Length:=1).Font.Name = "Symbol" 
    .Characters(Start:=45, Length:=1).Font.Name = "Symbol" 
    .Characters(Start:=26, Length:=32).Font.Size = 14 
     
End With 
Charts("Slope").Protect DrawingObjects:=True, Contents:=True, Scenarios:=True 
 
Application.ScreenUpdating = True 
 
End Sub 
 
 
 
 


