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Introduction 

The Streckeisen STS-1 vertical force-feedback seismic sensor uses an interesting and 
unusual mechanical configuration.  On the surface, it does not look as if it should have 
particularly impressive performance.  Its effective boom length is quite short, a little over 
2 inches, and its mass is a modest 0.6 Kg.  However the STS-1 would appear to have 
been a venerable and well respected instrument, which commanded a $five-figure price.  
I was interested in how such excellent performance could be obtained with this 
mechanical design and if possible, derive a general method for analyzing a fixed-end 
astatic spring. 
 
The STS-1 Geometry 

The geometry does appear to have some attractive features.  The boom is made of a pair 
of parallel metal plates, bridged by a few spacers.  With the leaf spring contained 
between the boom side plates, a very compact design is achieved, as opposed to using a 
solid boom, which must have its spring located entirely underneath, which then requires 
the boom to be positioned well above the mounting base.  It also appears in the STS-1, 
that a smaller, lighter spring and boom structure may be used while still maintaining good 
rigidity, thus moving the mechanical resonances up to higher frequencies.  The frequency  
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of these resonances will be a significant limiting factor on the design of a force-feedback 
seismometer.  Also, the boom design permits the forcing and sensing elements to be 
located up away from the seismic mass and spring.  In the STS-1 they are mounted well 
above the boom assembly, where any stray heat generation should be the least harmful. 
 
The STS-1 astatic spring configuration has the leaf spring rigidly attached at one end to 
the base plate and at the other, to the boom.  This configuration when compared with a 
flexibly attached spring, such as is used in S-T Morrissey’s STM-82, has features which 
are advantages, but which at the same time are its disadvantages.  Instead of the single 
degree of freedom, which can be characterized by force magnitude vs. length, the fixed-
end spring has three degrees of freedom; for example the force magnitude -F, force 

direction φ, and spring end-moment -Q(L); which may be related to the spring-end x 

coordinate X(L), y coordinate Y(L), and end direction θ(L).  The fixed-end spring thus 
has three parameters which may be varied by changing the system geometry.  It could be 
hoped that this would permit better optimization of the system characteristics.  On the 
other hand, there are many more parameter variations to be examined, and arriving at the 
"best" or even an acceptable combination by experimentation alone is likely to be 
extremely difficult. 
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Analysis 

To determine the natural period, it is easiest to analyze the boom system as a rotating 
spring-mass, much like the balance wheel of a mechanical alarm clock.  One element of 
the system is a distributed mass rotating about an horizontal axis, consisting of the 
seismic mass blocks and all the boom elements, and described by its rotational moment 
of inertia.  Along with the mass is the equivalent of a torsion spring.  This is a "virtual" 
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spring, arising from the sum of the moments acting on the boom, whose magnitude is 
approximately proportional to angular deflection, and which acts in a direction tending to 
restore the boom to its horizontal rest position. 
 
The virtual spring is the resultant of two competing moments which both vary slightly 
with boom rotation, one from the gravity force W acting on the center of mass, and 
tending to rotate the boom downward (CW), the other from the leaf spring, acting upward 
(CCW).  This virtual spring may be approximated by a rotational spring constant, defined 
as the (assumed constant) rate at which the net restoring moment changes per unit of 
boom rotation.  Once we have determined the moment of inertia and effective spring 
constant, the free period of oscillation is easily computed. 
 
In order to observe the nature of the restoring moment, we can compute the sum of the 

spring and gravity moments, and plot it vs. the up-down boom rotation angle γ.  For a 
workable design, we want two conditions to be fulfilled.  First, for equilibrium, the net 

restoring moment should be zero when the boom is in its horizontal rest position at γ = 0.   
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Second, in order to have a stable equilibrium, the upward moment should increase as the 
boom rotates downward, and then reverse and become a net downward moment as the 
boom is rotated above zero degrees.  This is of significance because it is easy to find 
configurations where the latter conditions are reversed, in which case, in the absence of 
force feedback the boom will be bistable, moving to either its upper or lower limit stop 
when released.  As plotted in the "Net Moment" chart, a stable net moment curve will 
intersect the Q = 0 axis with a negative slope, i.e. from upper left to lower right.  It would 

also be desirable for the net moment vs. rotation curve to be relatively linear near γ = 0, 
in the region where a force-feedback instrument would normally be operating. 
 
The Problem 

Most equations dealing with the bending of objects assume that the shape of the object 
(beam) does not change appreciably from its un-loaded shape when the load forces are 
applied.  For the beams supporting the floors of a building, for example, this is a 
reasonable assumption.  A leaf spring, bent through something like 180 degrees does not 
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meet the assumption of constant shape, and designers would typically use a Finite 
Element Analysis program in order to analyze such a spring.  The problem would be 
solved by using successive approximation. 
 
Lacking an FEA program I tried to see if the analysis could be done using the Microsoft 
spreadsheet program, Excel.  The desired analysis can, indeed, be done by using a series 
of Excel worksheets into which all the relevant parameters are entered.  Then, the effects 
of changing the various dimensions can be studied as they relate to the resulting period of 
oscillation, linearity and stability.   
 
The problem of determining the physical characteristics of a system of the STS-1 design 
may be broken into several parts. 
 
1. Given the dimensions and materials of the boom components and of the seismic mass 
blocks, compute the effective mass value, the location of the center of mass, the radius of 
gyration and the rotational moment of inertia for the boom-mass system. 
 
This is done in worksheet "Geometry".  These values change whenever the dimensions, 
geometry or materials of the boom or seismic mass are changed. 
 

2. As a function of the boom rotation angle, γ (0 = horizontal rest position), compute the 
coordinates of the center of mass and spring attachment point and the angle of the spring 
attachment.  Worksheet "Rotation" handles this.  Line 6 contains the results of the 
computation for a particular boom angle, defined in cell A69 of worksheet “Control”  
(Control!A69). 
 
3. As a function of the leaf spring dimensions and material properties, compute the spring 
end force (magnitude and direction) and 
the spring end moment, given the spring-
boom attachment point coordinates and 
angle. 
 
This step is the most involved to describe.  
For computational purposes, the leaf 
spring is broken into 600 small but finite 
elements of identical length.   
 
Beginning at the point where the spring is 
attached to the mounting base, the 
bending moment is calculated for the first 
element which allows the bend radius, ‘r’, 
to be determined fot the vicinity of that 
point.  Then knowing the location and 
angle of the element's starting face, the 
location and angle of its opposite face  
may be accurately computed.  In                Fig. 5  
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turn, the ending coordinates and angles of each element are used as the starting 
conditions for the next.  In this way, the shape of the entire spring may be built up, 
element by element.  Worksheet "spring" does this computation, using 600 lines, one for 
each of the elements, and the resultant spring shape is graphed on the chart "shape".   
 
For convenience in calculation (avoiding circular references) it is assumed that the force 
and moment are applied to the spring at the (fixed) location of the boom attachment 
point, which will not necessarily start out coincident with the end of the spring.  This can 
be viewed as if the force and moment are applied at the end of a rigid link connected to 
the end of the spring and extending to the attachment point on the boom. 
 
However, it should be noted that the problem we have just solved is the inverse of what 
we need.  What we wanted were the values of the force and moment given the desired 
spring-end position.  These are obtained in the following step by using the Excel "Solver" 
to back-solve the problem, performing a systematic trial and error search to find the exact 
force and moment which will result in the required spring end location and angle.  The 
effect of this will be to make the end of the spring coincide with its attachment point on 
the boom, and the imaginary link described above, disappears. 
 
To do this for one boom angle and parameter set, click    "Run Solver".   The results 

will appear in the "Control" worksheet, as changes to the spring end force and moment in 

cells C59-61, and also to any variables deriving from them.  These changes will also be 

reflected in charts “Shape”, “Moment” and “Slope”.  

 
4. For each of 21 boom rotation angles from +5 degrees to -5 degrees, compute the net 
restoring moment on the boom.  This process has been automated with the macro 

           "Spring_Solve", which when invoked by clicking it, first adjusts the mass blocks 

for exact balance at γ = 0, and then goes on using the Excel Solver to compute the 

significant moment values for the 21 values of gamma.  The results are placed in the 
Results Table, from which they become the source data for the three charts "Net 
Moment",  "Pivot Moments" and "Spring Moments"  A copy of the important parameters 
is created adjacent to the Results Table, for convenience in archiving the data set. 
 
5. Plot the net restoring moment vs. boom angle.  Then compute the slope of the net 
restoring moment curve at the point of boom equilibrium. 
 
Worksheet "CurFitter", generates a smoothed version of the net moment around the boom 
pivot vs. boom position, which is also displayed on charts "Pivot Moments" and "Net 
Moment" along with the previously computed results.    
 
6. Finally, compute the free period based on the boom moment of inertia and slope of the 
net restoring moment curve. 
 



This is calculated in worksheet "Control" and uses the slope of the net moment data 
obtained in step 5 and the moment of inertia from step 1 to obtain the free period of the 
spring-mass for the selected set of parameters.  The period is displayed in cell C38.   
 
Notes on the Excel analysis system 

 
The worksheet "Control" is where most parameters are entered and where the resulting 
values are viewed.  Cells which contain parameters (constants) are yellow.  Cells which 
contain key results (formulas) are blue.   
 

When “Spring Solve” finishes calculations for all 21 values of γ, the results may be saved 

by clicking           "Save Plot Data".   This appends the resulting data and parameter set to 

worksheet "Data Sets".  Then the process may be repeated using different parameters. 

 
To retrieve a previously saved data set along with its parameters, go to the "Data Sets" 
worksheet.  Highlight (click on) the blue date/time cell at the beginning of the desired 

data set and click          "Load Plot Data".  This will copy the selected data set and 

associated  parameters back to the "Control" worksheet. 

 
Results 

 

The preliminary results of this investigation are quite interesting.  Needing a set of 
dimensions to analyze and not having a spare STS-1 in my scrap box, I scaled various 
photographs and used some of the dimensions given in "The Paper"1.  In addition, S-T 
Morrisey2 had indicated that the effective mass was around 0.6 Kg and that the free 
period was set up for about 6 sec.  I am still seeking more information on the STS-1 
geometry, though apparently what I have assumed so far is not too far off the mark. 
 
Assuming a single steel spring 0.009" thick x 72.9 mm wide and 185.67 mm long, with 
the other dimensions approximately as given in "The Paper"1, the resulting period is 6.00 
seconds, requiring a 0.597 Kg effective mass.  Also of interest is how changes of only a 
tenth of a millimeter in the spring length can dramatically affect the free period.  These 
data were obtained using the above dimensions and varying the spring length. 
We see that the free period is a function of the leaf spring length, and gets longer as the 
spring gets shorter until we pass the point of neutral stability and the period numbers 
jump negative.  A negative period indicates that the associated configuration is unstable 
and the value suggests how quickly the boom will tend to move toward the end stop. 
 
 
 
 
 
 
 
 



Spring 
Length 

Free 
Period 

Wt. of 
Mass 

mm Seconds lb. 

185.90 4.10 0.5957 
185.85 4.36 0.5960 
185.80 4.67 0.5963 
185.75 5.07 0.5966 
185.70 5.60 0.5970 
185.67 6.00 0.5971 
185.64 6.50 0.5973 
185.60 7.44 0.5976 
185.55 9.47 0.5979 
185.50 15.42 0.5982 
185.48 26.52 0.5983 
185.46 -27.11 0.5985 
185.44 -15.53 0.5986 
185.40 -10.14 0.5988 
185.35 -7.74 0.5992 
185.30 -6.50 0.5995 

 
 
For each spring length selected, the mass value must be adjusted very slightly to obtain 
an exact balance when the beam is horizontal.  In practice, when adjusting the spring 
length, one would probably want to be fine tuning the mass position to balance the boom; 
but I had wanted to keep the geometry constant for this data set, so for now am choosing 
to adjust the mass value instead. (although I now see, this still does move the Center of 
Mass) 
 
It should be noted that there is nothing particularly special about adjusting the spring 
length to vary the free period, just as there is nothing special about the spring lengths 
obtained.  I believe that a similar looking set of data could be created by keeping the 
spring length constant and systematically adjusting some other dimension of the system. 
 
In looking at the sensitivity of the system to changes in its various dimensions, it appears 
that many or most of the other dimensions may be just as critical as the spring length.  A 
0.1 mm variation from optimum makes an enormous difference in performance.  One is 
unlikely to get this design working well by trial and error methods, and preliminary 
modeling will almost certainly have to be an essential part of the design process. 
 



The Excel Cookbook: 
 

Notes: 
 
This workbook will only work with Excel 97 and later versions.  It is also 
computationally intensive.  The routine “Spring Solve” requires nearly one minute to 
complete, with a 2 GHz PentiumIV, which implies that “Run Solver” is requiring an 
average of 2.5 seconds per solution.  Excel 2002, when running this workbook, was 
requiring 20Mb of free memory for the worksheet and the operation of its macros.   With 
a 600 MHz Pentium III, computation was about 3 times slower. 
 
Getting Started: 

 
Macro security: 

Since this workbook uses VBA macros you will want to give Excel permission to run 
them.  Some macros contain viruses, though I have tried to make sure that the ones here 
don’t.  When opening this workbook, you should agree to enable macros unless you are 
just browsing. 
 

 
                          Newer Version      Older Version     
 
To permit enabling macros, in Excel (newer versions), with a blank worksheet, go to 
“Tools / Options / Security / Macro Security / Security Level”  and select either Low or 
Medium (recommended), then OK (twice).   Note that if you selected Low, Excel will 
never offer you the option to disable macros for any Workbooks you may open. 
    
Some earlier versions of Excel, allow macros all the time.  Slightly more recent versions 
permit you to activate a warning popup (recommended) which allows you to select 
whether to allow macros to run or not.   In those version you can go to “Tools/ Options / 
General” and checkmark “Macro virus protection”.  This has exactly the same effect as 
setting the Security Level to “Medium” as described above.     
 
Solver: 

This Workbook requires the Excel Add-in called “Solver”  To determine that it will be 
available, Open Excel with a blank worksheet, then select Tools / Add-ins and look for 
“Solver Add-in” in the list.  It doesn’t matter if it is check marked or not, this Worksheet 
will select it automatically when it is opened.   



 
However, if there is no “Solver Add-in” listed, you can expect that the first time this 
Workbook is opened, you will be asked to install it.  That will require you to have 
available the original installation files for Excel, either from a CD, your hard drive or 
from a network.   
 
Custom toolbar: 

After opening this Worksheet, look to see that the STS-1 custom toolbar is visible.   
 
 
 
If not, select “View / Toolbars ” and make sure the "STS-1" entry is checked. 
 
Worksheet locking.   

 
All worksheets are protected, which prevents the accidental altering of important 
formulas.  Cells which contain input constants are colored light yellow.  Data may be 
entered in those cells, and all macros may be run without unlocking the worksheets.  To 
unlock a worksheet, select Tools/Protection/Unprotect Sheet. 
 

Back up your Worksheet: 

Make a backup copy of the STS1solve.xls, or keep STS1solve.zip.  This is mainly so that 
you can get back to a known starting point after doing experiments.  Having a backup 
copy has saved me a lot of work several times, after I'd messed things up. 

 

The Charts: 
 
Shape  (Updated real-time. Valid solution after running “Solver”) 
This shows the shape of the spring  The X and Y coordinate scales should be kept the 
same to avoid distortion.  It is a great place to see how the spring end forces are adjusted 
to get the desired end coordinates.  Whenever you change a parameter, the spring end 
will move away from the target point (assuming the “Auto Solve” cell was set to 
“FALSE”).  After running Solver, the end forces will have been adjusted so that the 
spring is connected again. 
 
Net Moment   (Plotted from data in the table generated by “Spring Solve”) 
Shows the restoring moment vs. boom rotation, plotted from the difference between the 
gravity moment and spring moment curves, or rather, from cubic polynomial curves fitted 
to them.  The present setup computes the moment data accurately enough for each curve 
to be essentially identical to its fitted approximation.  A line tangent to the Net Moment 
curve at zero degrees rotation approximates the torsion spring constant, which is 
determining the free period.  Also a plot of slope vs. boom rotation gives a quantitative 
look at the degree of nonlinearity of this virtual spring. 
 
 

 



Pivot Moments    (Plotted from data in the table generated by “Spring Solve”) 
Shows the gravity and spring moments separately vs. boom rotation.  These are opposing 
moments, but the gravity moment is plotted as its negative.  Where the curves intersect is 
the point where the net moment is zero.  At present, “Spring Solve” adjusts the mass 
slightly, which raises or lowers the gravity moment curve so that, for the assumed set of 
parameters, the intersection occurs at zero degrees boom rotation.  These curves are very 
helpful in visualizing how geometry changes are affecting the free period. 
 
 

Spring Moments  (Plotted from data in the table generated by “Spring Solve”) 
The spring has two effects on the boom.  First it creates a force which tends to rotate the 
boom downward.  Then its end moment, which in the default example is about four times 
larger, tends to rotate the boom upward.  The force-induced moment, the spring end 
moment and their sum are plotted vs. boom rotation.  It is interesting that both 
components of the spring moment, when varying the boom angle, change in opposite 
directions, so that the total spring moment change with boom rotation is rather small. 
 
Period  (Plotted from data in manually-entered table) 
shows free period vs. spring length for a set of assumed parameters.  It is plotted from the 
"Control” worksheet, "Summary, current values" data.  This data for this chart was 
entered by hand by running “Spring Solve” for successive values of spring length and 
copying the results into the table. 
 
Moment  (Updated real-time. Valid solution after running “Solver”) 
shows the spring bending moment vs. distance along the spring from s = 0 to L, the end 
of the spring.  Data comes from Worksheet "Spring". 
   
Slope  (Updated real-time. Valid solution after running “Solver”) 

shows the angle θ the spring makes with the world horizontal vs. distance along the 

spring.  Where the spring attaches to the base, θ = 90 degrees, at s = 0, .  If the boom is 

horizontal, θ = -90 degrees, at s = L, where the spring attaches to the boom.  Data comes 
from Worksheet "Spring". 
 

The STS-1 Command Bar: 
 
Auxiliary buttons: 

 
  Paste Values 

Pastes only copied cell value, not its formula or format. 
 Almost always you will want to use this instead of <ctrl>V or Edit, Paste. 

 
 
  Paste Format 

 Pastes only cell format, not its value or formula. 
  You will likely need this only when modifying the worksheets. 



 Protect All 

 Sets all worksheets and charts in this workbook to “Protected”.  Normally used 
 before  saving the workbook file, if worksheets have been unprotected for editing. 
 
Spring solving buttons: 

 
 Run Solver 

 Recomputes the spring end force and moment to match the current boom 
  position and other parameters.  Attaches the spring end to the target position. 
 Run this after changing any parameter.  Usually takes 10-30 seconds. 
 
 
 Spring Solve 

 Computes and records a complete set of 21 results for boom positions from -5 deg 
 to +5 deg. using the current parameter set in Control!C2:C12, etc.  The result 
 table is saved in Control!A72:K92 and is used to create the three "Moment" 
 graphs.  A copy of the parameters used is placed to the right of the data set. 
  Takes about 10 minutes on a Pentium II-class computer and about one minute on 
 a 2GHz Pentium IV. 
 
 
  Save Plot Data 

 Appends the current “Plot Data” results table and parameters to Worksheet 
 "Data Sets" 
 
 
 Load Plot Data 

 Retrieves one value set from the "Data Sets" worksheet into the “Plot Data” table 
 for display in the "Moments" graphs, along with the associated parameters.  Loads 
 the table corresponding to the selected (blue) Date/Time cell. 
 
 
  Set Chart Titles 

 Updates the Chart Title variables to correspond to the data sets being displayed.    
 Use this before printing or using the charts.  However it will be done 
 automatically by “Run Solver”, “Spring Solve” and “Load Plot Data” 
 
Auto Solve 

Almost any time an input parameter (yellow cell) is changed, the spring end becomes 
detached from its attachment point on the boom, which can best be observed in the Chart 

 “Shape”.  In order to reconnect the spring one must execute the           “Run Solver” 

 macro (above), which iteratively seeks the solution.  This procedure can be automated by 

 entering “TRUE” in cell H66 of Worksheet “Control”.  Then, any change to a cell which 
causes the spring end to separate from its attachment will automatically invoke “Run 
Solver”.  By default, H66 is set “FALSE”. 
 



Solver Convergence 

Although the Excel “Solver” program usually does an excellent job of converging on the 
correct solution, it is possible for it to become confused if its starting point is badly 
chosen or following large changes made to the parameters.  If necessary, the starting 
values may be entered manually into cells C59-61 of the “Control” worksheet.  These 
cells normally contain the values calculated in the previous “Solver” run.   
 
To observe the sort of problem which may occur, make sure cell H66 of “Control”  is 
“FALSE”; then try entering 0, 0, -1  for F, φ and Q(L).  You can see on the “Shape” chart 
that the spring is now curving off the chart to the left.  Then click the “Run Solver” 
button.  After 100 iterations, Solver will pause, and you should click “Stop” in the pop up 
window which appears. 
 
   
 
 
 
 
 
 
Now look at “Shape” again.   
 
This sort of problem can be avoided by ensuring that the starting conditions have the 
spring bending in the correct direction and ending in the general vicinity of the boom 
attachment point.  Normally that will be the case if changes made to the parameters are 
not too large.  However if there is a problem, for the default spring defined here, 0,0,2 
can be entered as a safe starting set.   Note that entering 0,0,0 creates undefined values 
which are associated with having specified an infinite bending radius. 
 

Known bugs: 
 
1) If you start to close the worksheet, but click “cancel” on the “Do you want to save 
changes” pop-up, the special “STS-1” toolbar disappears.   
 
Workaround to recover it:  Select Tools / Customize / Toolbars  Then scroll down and 
restore the checkmark for “STS-1”. 

 

Some Random Thoughts: 
 
Thin beams:  A wide, thin, spring behaves slightly differently when bent compared with a 
piece of steel that has, for example, a square cross section.  The simple beam-bending 
equations would be accurate for the square beam, but not for the leaf spring.  The latter 
will appear to be stiffer than predicted by a factor of about 9%, or to be more precise by a 

factor of 1/(1-ν2) where ν is Poisson’s ratio, which for steel is about 0.29.  The easiest 
way to incorporate this correction into the bending equations is to assume an increased 
value for  the modulus of elasticity of the spring material by multiplying by that factor.  If 



the stated modulus of elasticity for the spring material is E, then the corrected value, 

called E1 in the spreadsheet, equals E/(1-ν2) or for steel, E/ 0.916 .   
 
Temperature coefficient:  At a guess, the temperature coefficient of the mechanical 
system should be a little less than 200 parts per million per degree C, whatever that 
implies in performance terms.   I think it means that you would have problems with 
temperature related drift, especially in a VBB system.  It appears that the real STS-1 may 
be using a spring alloy, processed to have a very low tempco of elastic modulus such as 
Elinvar or NiSpan-C.  However, it should be noted that these alloys are not quite as 
strong as spring steel (lower yield stress) and would be more prone to taking a permanent 
‘set’ if bent too stongly.  Constructing, aging, testing and adjusting such a spring system 
was likely a significant part of the effort of building the STS-1.   
 
An open issue for me is how to connect the force transducers and position sensor to the 
boom in a way that isn't badly affected by the short radius of their attachment arms as my 
photos aren’t clear as to how it is done in the STS-1 design.   
 
Brett Nordgren 
20 May, 2000  
Rev. –  1 January, 2008 
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Appendix I 

 
The Solver Model 

 
The macros “Run_Solver” and “Spring_Solve” both use the “Solver” add-in program.  
The control parameters passed to “Solver” are located on the “Control” worksheet in the 
named range “Solver_Model” located in cells I60-64.  The data in those cells is as 
follows: 

 
Cell              Contents    Meaning 

I60  =MIN($F$65)   Minimize F65 (θ(L) error squared) 
I61  =COUNT($C$59:$C$61) By varying cells C59-61 
I62  =$D$63=Control!$C$63 Constraint: X(L) = its target value 
I63  =$D$64=Control!$C$64 Constraint: Y(L) = its target value 
I64  ={200,100,0.0000000001,0.00000000001,FALSE,FALSE,TRUE,2,2,1, 
  0.0000000001,FALSE} 
 
 Cell I64 contains multiple parameters:  
  200   Max time – sec. 
  100   Max number of Iterations 
  0.0000000001  Precision 
  0.0000000001  Tolerance 
  FALSE  Assume linear (not) 
  FALSE  Assume non-negative (not) 
  TRUE   Use automatic scaling 
  2   Estimates: Quadratic (selection 2) 
  2   Derivatives: Central (selection 2) 
  1   Search: Newton (selection 1) 
  0.0000000001  Convergence 
  FALSE  Show iteration results (not) 
 
These values have been found to generally work pretty well.  On a slower computer, it 
may be necessary to reduce “Max Time” and “Iterations” to permit the process to abort if 
it is taking too long. 
 



Appendix II  
 
To Understand the Math: 

 
It is not necessary to understand the math, physics or mechanics which were used to 
create the spreadsheet in order to use it, but the more background the reader has in certain 
areas, the better the problem can be understood. 
 
To begin with, the over all design is analyzed as a torsion pendulum, so it is useful to 
have seen something of the physics of such a device.  In particular, the analysis considers 
this pendulum to be a distributed mass, rather than a point mass, which involves such 
concepts as the Radius of Gyration.  A beginning physics book would cover these. 
 
Secondly, a basic understanding of forces, force vectors and moments is fundamental to 
the analysis.  It is useful to understand how to interpret a free-body diagram, such as in 
fig. 3.  This involves understanding the relationship between moments and forces and 
understanding that, when at rest, the forces and moments on such a body must both sum 
to zero.  These would be covered in a beginning book on Mechanics or Strength of 
Materials.   
 
Also, such books would cover the simple beam-bending equations used to compute the 
bending radius of each element of the spring, as shown in figure 6, which uses concepts 
such as material Elastic Modulus, and properties of the spring cross-section shape, such 
as Section ‘Moment of Inertia’ (which incidentally has nothing to do with physical 
inertia).   
 
And algebra and trigonometery are used throughout. 
 


